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Prevalence of State Right-to-Work Laws
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Increasing trend of fatal and nonfatal occupational injuries

“Deaths of despair” on the rise in the US (Case & Deaton, 2015, 2017)

2 / 20



Introduction Hypothesis Data and Measures Empirical Method Results Discussion

Research Question

▶ What is the causal impact of the Right-to-Work (RTW) legislation on popu-
lation health?
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Existing Literature

▶ Studies on the economic effects of RTW laws have produced mixed results,
but a substantial literature agrees that they tend to weaken union bargain-
ing power (Holmes 1998; Chava et al. 2020; Kalenkoski & Lacombe 2006; Vedder
& Robe 2014; Carroll 1983; Ellwood & Fine 1987; Eren & Ozbeklik 2016; Garofalo
& Malhotra 1992; Lumsden & Petersen 1975)

▶ The health impacts of RTW laws remain understudied (Gould & Shierholz
2011; Zullo 2011; Zoorob 2018)

▶ Existing literature suffers from important methodological limitations (Borusyak
et al. 2021; Callaway & Sant’Anna 2021; De Chaisemartin & D’Haultfoeuille 2020;
Goodman-Bacon 2021; Baker et al. 2021; Sun & Abraham 2021)

Two key contributions:
1. widen the literature on the link between RTW laws and health
2. address the methodological issues
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This Paper

▶ Investigate the impact of RTW laws on four critical health outcomes
1. all-cause mortality
2. mortality among White and Black workers without college degrees
3. mortality related to “deaths of despair”
4. occupational fatal injuries

▶ Construct a unique state-year-level dataset for the years 1992-2016 from
multiple data sources

▶ Apply the innovative interactive fixed effects counterfactual (IFEct) estima-
tor to investigate the dynamic treatment effects
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Theoretical Framework

▶ Restrict the functions of unions, less likely to receive employer-sponsored
health insurance

▶ Worse workplace safety

▶ Restrict health promotion, worse psychosocial influences on health (e.g., job
instability and no sense of belonging)
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Data

State-year panel dataset of 50 states from 1992-2016
▶ Dependent variables:

1. workers’ age-adjusted (25-64) mortality from CDC and SEER
2. all-cause mortality rates for White and Black workers without college degrees

separately
3. “deaths of despair” mortality: drug overdose, suicide, and alcohol-related dis-

eases
4. fatal occupational injuries from BLS

▶ Key independent variables:
1. enactment of RTW laws - four treatment units: Oklahoma, Michigan, Indiana,

and Wisconsin
▶ Control variables:

1. several time-varying state characteristics similarly as Zoorob (2018) and Caughey
and Warshaw (2016)
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The dynamic “roll out” of RTW laws
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Traditional TWFE Approach

yit = αi + αt + δDit + ϵit
▶ αi and αt are unit and time fixed effects
▶ Dit the unit-time indicator for treatment

Allows only one parameter to capture the treatment effect for all units

δ with staggered treatment timing is a weighted average of many different
treatment effects: weights are often negative and non-intuitive
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Negative Weighting Problem

Source: Goodman-Bacon (2021)

▶ Units treated in the middle get more weight as treated
▶ Units treated at the beginning or toward the ends get more weight as con-

trols
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Why TWFE approach fails in our case?

TWFE models in the staggered policy adoption can lead to severely biased
estimates of the treatment effect (Borusyak et al. 2021; Callaway & Sant’Anna
2021; De Chaisemartin & D’Haultfoeuille 2020; Goodman-Bacon 2021; Imai &
Kim 2019; Sun & Abraham 2021)

▶ TWFE in staggered design violates:
1. ✕ “constant treatment effect”
2. ✕ “no carryover effect”
3. ✕ strict exogeneity
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Counterfactual estimators

“Causal inference is a missing data problem” more details
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Intuition of IFEct method

▶ In a panel setting, treat Y (1) as missing data
▶ PredictY (0) based on an outcome model (a factor model) (Gobillon & Magnac,

2016; Xu, 2017; Liu et al. 2021)
- Train prediction models only with data in the control group

▶ Estimate ATT by averaging differences between Y (1) and Ŷ (0)

link to scm
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The advantages of IFEct method

TWFE :

▶ ✕ “constant treatment effect”

▶ ✕ “no carryover effect”

▶ ✕ strict exogeneity

IFEct :
▶ ✓ heterogeneous treatment ef-

fects

▶ ✓ dynamic & carryover effects

▶ ✓Account for certain unobserved
time-varying confounders

- Rely on the factor-augmented
models to relax the strict exo-
geneity assumption
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The Dynamic Treatment Effects of RTW



All-cause mortality



“Deaths of despair”



Fatal injuries
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Other Results

▶ Diagnostic tests
• Placebo test: Statistically indistinguishable from zero, except for drug-overdose

mortality and mortality for White workers without college degrees
• Wald test for no pre-treatment trend: The p-values are all greater than 0.1, thus

fail to reject the null hypothesis that there is no pre-treatment trend

▶ Effects by treatment cohort: Oklahoma experienced a particularly strong
effect
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Conclusion

▶ This study examines the effects of RTW legislation on population health
outcomes

• We apply the innovate IFEct approach to overcome pitfalls of the TWFE
method

• The passage of RTW laws has led to increased mortality

• A greater impact on early adopter – Oklahoma, important to uncover
the heterogeneity of treatment effects
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Policy Implication

▶ Policy makers should focus their attention on how changes in labor and
industrial policy “spill over” to health impacts

• Factor in these risks and their costs for policy evaluation
• Use correct methods to quantify the effects

▶ States that choose to pass RTW laws should consider “safeguards” to re-
duce negative effects on workers’ health, especially those without college
degrees
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Right-to-work Laws

▶ Ban on contracts requiring all employees to join and pay dues to a union

▶ Arguments for:
• Liberty of contract
• Freedom of association

▶ Arguments against:
• Free-riding
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Link with synthetic control

▶ Recall that ADH (2010) use a factor-augmented model to motivate the syn-
thetic control method:

Yit(0) = θ′tZi + ξt + λ′
i ft + εit

▶ What if we actually estimate the model using observations under the con-
trol condition only?

▶ Xu (2017) imports the so-called interactive fixed-effect (IFE) model to a DiD
setting:

Yit(0) = X ′
itβ + αi + ξt + λ′

i ft + εit

▶ Athey et al. (2021) extend it and introduce the matrix completion method
▶ Liu et al. (2021) put these methods in a general framework — “the counter-

factual estimators”
▶ No negative weighting!

back
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Model-based counterfactual estimators

A model-based counterfactual estimator proceeds in the following steps:
▶ Step 1: Train the model using observations under the control condition

(Dit = 0).
▶ Step 2. Predict the counterfactual outcome Ŷit(0) for each observation un-

der the treatment condition (Dit = 1) and lobtain an estimate of the indi-
vidual treatment effect: τ̂it = Yit − Ŷit(0)

▶ Step 3. Generate estimates for the causal quantities of interest

ATT = E [τit | Dit = 1, ∀i ∈ T ,∀t] , or
ATTs = E[τit | Di ,t−s = 0,Di ,t−s+1 = Di ,t−s+2 = · · · = Dit = 1︸ ︷︷ ︸

s periods

,∀i ∈ T ].

back
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TWFE vs. IFEct
(1) (2)

Two-Way Fixed Effects Interactive Fixed
Effects Counter-
factual Estimates

(TWFE) (IFEct)
Panel A: All-cause mortality
All-cause mortality 0.03 0.01

(0.02) (0.04)
All-cause mortality (Whites non-college workers) 1.21 1.53

(0.72) (1.60)
All-cause mortality (Blacks non-college workers) 1.15 1.23

(0.97) (1.78)
Panel B: Mortality Related to “Deaths-of-Despair”
Drug-overdose mortality 0.20* 0.07

(0.08) (0.13)
Alcohol-related mortality 0.03 0.03

(0.03) (0.08)
Suicide mortality 0 -0.02

(0.02) (0.04)
Panel C: Fatal injuries
Occupational fatal injuries 0.18** 0.22*

(0.06) (0.12)
Observations 1250 1250
# Units 28 28
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