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Increasing trend of fatal and nonfatal occupational injuries
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“Deaths of despair” on the rise in the US (Case & Deaton, 2015, 2017)
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Research Question

» What is the causal impact of the Right-to-Work (RTW) legislation on popu-
lation health?
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Existing Literature

» Studies on the economic effects of RTW laws have produced mixed results,
but a substantial literature agrees that they tend to weaken union bargain-
ing power (Holmes 1998; Chava et al. 2020; Kalenkoski & Lacombe 2006; Vedder
& Robe 2014; Carroll 1983; Ellwood & Fine 1987; Eren & Ozbeklik 2016; Garofalo
& Malhotra 1992; Lumsden & Petersen 1975)

» The health impacts of RTW laws remain understudied (Gould & Shierholz
2011; Zullo 2011; Zoorob 2018)

» Existing literature suffers from important methodological limitations (Borusyak
et al. 2021; Callaway & Sant’Anna 2021; De Chaisemartin & D’Haultfoeuille 2020;
Goodman-Bacon 2021; Baker et al. 2021; Sun & Abraham 2021)

Two key contributions:
1. widen the literature on the link between RTW laws and health
2. address the methodological issues
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This Paper

» Investigate the impact of RTW laws on four critical health outcomes
1. all-cause mortality
2. mortality among White and Black workers without college degrees
3. mortality related to “deaths of despair”
4. occupational fatal injuries

» Construct a unique state-year-level dataset for the years 1992-2016 from
multiple data sources

» Apply the innovative interactive fixed effects counterfactual (IFEct) estima-
tor to investigate the dynamic treatment effects
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Hypothesis
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Theoretical Framework

» Restrict the functions of unions, less likely to receive employer-sponsored
health insurance

» Worse workplace safety

» Restrict health promotion, worse psychosocial influences on health (e.g., job
instability and no sense of belonging)
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Data and Measures
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Data

State-year panel dataset of 50 states from 1992-2016
» Dependent variables:
1. workers’ age-adjusted (25-64) mortality from CDC and SEER
2. all-cause mortality rates for White and Black workers without college degrees
separately
3. “deaths of despair” mortality: drug overdose, suicide, and alcohol-related dis-
eases
4. fatal occupational injuries from BLS
» Key independent variables:
1. enactment of RTW laws - four treatment units: Oklahoma, Michigan, Indiana,
and Wisconsin
» Control variables:

1. several time-varying state characteristics similarly as Zoorob (2018) and Caughey
and Warshaw (2016)
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The dynamic “roll out” of RTW laws
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Traditional TWFE Approach

yir = aj + ar + 0Dy + €

» «; and «a, are unit and time fixed effects
» D; the unit-time indicator for treatment

Allows only one parameter to capture the treatment effect for all units

0 with staggered treatment timing is a weighted average of many different
treatment effects: weights are often negative and non-intuitive
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Negative Weighting Problem
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» Units treated in the middle get more weight as treated
» Units treated at the beginning or toward the ends get more weight as con-

trols

Discussion
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Why TWFE approach fails in our case?

TWEFE models in the staggered policy adoption can lead to severely biased
estimates of the treatment effect (Borusyak et al. 2021; Callaway & Sant’Anna
2021; De Chaisemartin & D’Haultfoeuille 2020; Goodman-Bacon 2021; Imai &
Kim 2019; Sun & Abraham 2021)

» TWEFE in staggered design violates:

1. X “constant treatment effect”
2. X “no carryover effect”
3. X strict exogeneity

11/20



Introduction Hypothesis Data and Measures Empirical Method Results Discussion
00000 o 00 000000 00000 000

Counterfactual estimators

Y(1)

Treatment Effect

Treatment Group Counterfactual Y(0)
Control Group
Before After

Intervention

“Causal inference is a missing data problem”
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Intuition of IFEct method

» In a panel setting, treat Y (1) as missing data

» Predict Y'(0) based on an outcome model (a factor model) (Gobillon & Magnac,
2016; Xu, 2017; Liu et al. 2021)

- Train prediction models only with data in the control group
> Estimate ATT by averaging differences between Y (1) and Y/(0)
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The advantages of IFEct method

TWEFE : IFEct :
»  heterogeneous treatment ef-
» X “constant treatment effect” fects

» v dynamic & carryover effects

» X “no carryover effect”

» X strict exogeneity

»  Account for certain unobserved
time-varying confounders
- Rely on the factor-augmented
models to relax the strict exo-
geneity assumption
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The Dynamic Treatment Effects of RTW
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Other Results

» Diagnostic tests

® Placebo test: Statistically indistinguishable from zero, except for drug-overdose
mortality and mortality for White workers without college degrees

e Wald test for no pre-treatment trend: The p-values are all greater than 0.1, thus
fail to reject the null hypothesis that there is no pre-treatment trend

» Effects by treatment cohort: Oklahoma experienced a particularly strong
effect
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Conclusion

» This study examines the effects of RTW legislation on population health
outcomes

* We apply the innovate IFEct approach to overcome pitfalls of the TWFE
method

® The passage of RTW laws has led to increased mortality

e A greater impact on early adopter - Oklahoma, important to uncover
the heterogeneity of treatment effects
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Policy Implication

» Policy makers should focus their attention on how changes in labor and
industrial policy “spill over” to health impacts

e Factor in these risks and their costs for policy evaluation
e Use correct methods to quantify the effects

» States that choose to pass RTW laws should consider “safeguards” to re-
duce negative effects on workers’ health, especially those without college
degrees
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Right-to-work Laws

» Ban on contracts requiring all employees to join and pay dues to a union

» Arguments for:

¢ Liberty of contract
® Freedom of association

» Arguments against:
® Free-riding
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Link with synthetic control

Recall that ADH (2010) use a factor-augmented model to motivate the syn-
thetic control method:

Yie(0) = 0,Z; + & + Nify + €

What if we actually estimate the model using observations under the con-
trol condition only?

Xu (2017) imports the so-called interactive fixed-effect (IFE) model to a DiD
setting:

Yie(0) = X8 + i + & + Nify + €ie
Athey et al. (2021) extend it and introduce the matrix completion method

Liu et al. (2021) put these methods in a general framework — “the counter-
factual estimators”

No negative weighting!
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Model-based counterfactual estimators

A model-based counterfactual estimator proceeds in the following steps:
» Step 1: Train the model using observations under the control condition
(Dit = O)-
> Step 2. Predict the counterfactual outcome Y;(0) for each observation un-

der the treatment condition (D; = 1) and lobtain an estimate of the indi-
vidual treatment effect: 7;; = Y — Y;:(0)

» Step 3. Generate estimates for the causal quantities of interest

ATT =E|[r,. | D =1,Vi € T,Vt], or
ATT, =E[7it | Djt—s =0,Dit—s11 = Djt-s42=--=Dpp =1,Vi€T].

TV
s periods

3/4



TWEFE vs. IFEct

(1)

(2)

Two-Way Fixed Effects

Interactive Fixed
Effects Counter-
factual Estimates

(TWFE) (IFEct)

Panel A: All-cause mortality

All-cause mortality 0.03 0.01
(0.02) (0.04)

All-cause mortality (Whites non-college workers) 1.21 1.53
(0.72) (1.60)

All-cause mortality (Blacks non-college workers) 1.15 1.23
(0.97) (1.78)

Panel B: Mortality Related to “Deaths-of-Despair”

Drug-overdose mortality 0.20* 0.07
(0.08) (0.13)

Alcohol-related mortality 0.03 0.03
(0.03) (0.08)

Suicide mortality 0 -0.02
(0.02) (0.04)

Panel C: Fatal injuries

Occupational fatal injuries 0.18** 0.22*
(0.06) (0.12)

Observations 1250 1250

# Units 28 28
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